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ABSTRACT: A copper-mediated dehydrogenative biaryl cross-coupling of naphthylamines and 1,3-azoles has been developed.
The key to its success is the introduction of N,N-bidentate coordination system based on the picolinamide directing group. The
reaction proceeds smoothly without precious transition metal catalysts and provides highly 7-extended heterobiaryls directly.

1. INTRODUCTION

In past two decades, transition-metal-promoted C—C bond
forming reactions involving C—H cleavage have grown rapidly
because of their higher synthetic efficiency compared to the
conventional cross-coupling technologies with organic halides
and organometallic reagents.1 Among them, metal-mediated
dehydrogenative biaryl coupling of two arenes is now one of
the hottest research fields in C—H activation chemistry, because
it can obviate preactivation steps of both starting arenes via the
2-fold C—H cleavage. In general, such transformations require
palladium,” rhodium,” and ruthenium® catalysts. On the other
hand, our group® and others® have focused on copper salts and
complexes as common, abundant, and less expensive
alternatives to the above precious metals and developed
copper-mediated direct biaryl couplings of some heteroarenes.
However, further development of new reaction systems and
expansion of substrate scopes are still strongly desired.
Recently, Daugulis reported the copper-mediated direct
sulfenylation, amination, and fluorination of arenes with the
aid of his original N,N-bidentate coordinating functions
including aminoquinoline and picolinamide systems.” Around
the same time, we also succeeded in the application of
aminoquinoline-based coordination strategy to the copper-
promoted direct biaryl coupling of benzoic acid derivatives and
1,3-azoles.> In the course of our further study, we have
explored other effective bidentate directors to expand the utility
of copper-mediated biaryl coupling. As a result, we have found
that dehydrogenative direct biaryl coupling of naphthylamines
and 1,3-azoles efliciently proceeds by employing a picolina-
mide-based directing group.*™'" The present reaction enables
the direct heteroarylation at the peri position of the 1-
substituted naphthalene, which is in marked contrast and
complementary to the aminoquinoline system, giving products
coupled at the 2- as well as ortho-positions®® and hence
provides a rapid and concise approach to Il-amino-8-
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heteroarylnaphthalenes of important scaffolds in functional
materials as well as ligands for metal centers.'>

2. RESULTS AND DISCUSSION

We began our optimization studies with 1-naphthylamine
derivative 1a and benzoxazole (2a) as model substrates (Table
1). Different from the 8-aminoquinoline bidentate system,*?
Cu(OAc), (2.0 equiv) alone did not promote the dehydrogen-
ative coupling at 150 °C in o-xylene (entry 1), but the addition
of AcOH (1.0 equiv) and higher reaction temperature (160 °C
in mesitylene) resulted in formation of desired 3aa in 20%
NMR vyield (entry 2). An increase in the amount of Cu(OAc),
to 3.0 equiv further improved the reaction efficiency (entry 3).
Even at 160 °C, AcOH was essential for the good conversion
(entry 4), while an excess amount of AcOH was detrimental
(entries S and 6). Next, some representative carboxylic acids
were screened (entries 7—10). As far as we tested, any acid
additives were effective for the reaction, with PivOH proving to
be optimal (entry 8). Other acetate-type copper salts such as
Cu(OCOi-Pr), and Cu(2-ethylhexanoate), diminished the
yield (entries 11 and 12). Molecular oxygen also gave negative
impact on the reaction (entries 13 and 14). Although additional
investigation into the solvent system also did not improve the
yield (entries 15 and 16), we finally obtained 3aa in 73% yield
by a slight increase of reaction temperature (entry 17). In this
case, the homocoupling product of 2a was also formed but in
only 13% yield (0.032 mmol, based on 0.25 mmol). Even under
equimolar conditions (entry 18), we could get a comparable
yield of 3aa without formation of the homocouplng product,
judged by GC and TLC analysis. Thus, the cross-coupling
reaction occurred predominantly over the homocoupling
reaction of 2a. Notably, regardless of conditions, the C—C
bond formation occurred site-selectively at the peri position of
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Table 1. Optimization Studies for Copper-Mediated Dehydrogenative Biaryl Coupling of 1-Naphythylamine 1a with

Benzoxazole (2a)”

(o]
Sy e

Cu, additive O N A
H |
conditions N N&&

4-6h g
o)
3aa @

1a (0.25 mmol) 2a (0.50 mmol)
entry Cu (mmol) additive (mmol) conditions yield (%)b
1 Cu(0Ac), (0.50) none o-xylene, 150 °C, N, trace
2 Cu(OAc), (0.50) AcOH (0.25) mesitylene, 160 °C, N, 20
3 Cu(OAc), (0.75) AcOH (0.25) mesitylene, 160 °C, N, 61 (57)
4 Cu(OAc), (0.75) none mesitylene, 160 °C, N, trace
S Cu(OAc), (0.75) AcOH (0.50) mesitylene, 160 °C, N, 48
6 Cu(0Ac), (0.75) AcOH (0.75) mesitylene, 160 °C, N, S
7 Cu(OAc), (0.75) EtCO,H (0.25) mesitylene, 160 °C, N, 43
8 Cu(0Ac), (0.75) PivOH (0.25) mesitylene, 160 °C, N, 66 (65)
9 Cu(0Ac), (0.75) 1-AdCO,H (0.25) mesitylene, 160 °C, N, 65
10 Cu(OAc), (0.75) 2,6-Me,C¢H,CO,H (0.25) mesitylene, 160 °C, N, 57
11 Cu(OCOi-Pr), (0.75) PivOH (0.25) mesitylene, 160 °C, N, 20
12 Cu(2-ethylhexanoate), (0.75) PivOH (0.25) mesitylene, 160 °C, N, 14
13 Cu(0Ac), (0.75) PivOH (0.25) mesitylene, 160 °C, air 23
14 Cu(OAc), (0.75) PivOH (0.25) mesitylene, 160 °C, O, 4
15 Cu(OAc), (0.75) PivOH (0.25) DME, 165 °C, N, 59
16 Cu(OAc), (0.75) PivOH (0.25) DMSO, 180 °C, N, 24
17 Cu(OAc), (0.75) PivOH (0.25) mesitylene, 165 °C, N, 77 (73)
18° Cu(0Ac), (0.75) PivOH (0.25) mesitylene, 165 °C, N, 75

“Reaction conditions: Cu, additive, 1a (0.25 mmol), 2a (0.50 mmol), solvent (1.5 mL). *'"H NMR yield. Yield after purification is given in

parentheses. “With 0.25 mmol of 2a.

Scheme 1. Control Experiments
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/ Cu(OAc)z, PivOH not detected
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165°C, 4h
b conditions of entry 17 in Table 1 J\Ej

not detected

naphthalene ring but not at the position ortho to the amide
group, probably resulting from a preferable formation of a five-
membered metalacycle (vide infra)."> Moreover, neither N-
methyl nor benzoyl analogue of 1a coupled with 2a (Scheme
1), and thus anionic and neutral N,N-bidentate chelation nature
of the picolinamide in 1a was critical in this transformation.
With the promising conditions in hand, we then investigated
the substrate scope of 1,3-azoles. The representative examples
are shown in Table 2. In most cases, the use of 2.0 equiv of 1,3-
azoles was found to be essential for the completion of the
reaction. In addition to the simple benzoxazole 2a, methyl- and
chloro-substituted benzoxazoles participated in the reaction
(3ab and 3ac). The monocyclic S-phenyloxazole also could be
employed to construct the naphthalene—oxazole—benzene 7-
conjugate system readily (3ad). Moreover, electronically
diverse methyl, methoxy, and trifluioromethyl groups (3ae,
3af, 3ag, and 3ah) were equally tolerated under identical
reaction conditions. Additionally notable is high compatibility
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with cyano, methoxycarbonyl, and nitro functions (3ai, 3aj, and
3ak). The oxazole that bears the naphthyl substituent also
underwent the coupling with 1a without any difficulties (3al).
Among other azoles we tested, thiazoles showed acceptable
reaction efficiency; parent thiazole and 4,5-dimethylthiazole
reacted with 1a to afford the corresponding 7-extended thiazole
cores (4aa and 4ab). However, attempts to apply benzothia-
zoles, imidazoles, triazoles, and 1,3,4-oxadiazoles remained
unsuccessful, and products were detected only in less than 20%
yield (data not shown).

Subsequently, substitution effects in the 1-naphthylamine
were briefly evaluated (Figure 1). The introduction of electron-
withdrawing cyano and nitro groups at the C4 position gave
only a minor impact on reaction efficiency (3ca, 3 cd, 3da, and
3dd), whereas the electron-donating methoxy substituent
largely dropped the yield (3ba), likely because of the decrease
of acidity of NH, which hampers effective cyclometalation (vide
infra). It is noteworthy that the reaction of 1-aminopyrene also
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Table 2. Copper-Mediated Dehydrogenative Biaryl Coupling
of 1-Naphthylamine Derivative la with Various 1,3-Azolesa

O
‘ Cu(OAc),
N N B P|vOH
‘ H)H@ + H-HetAr = itvlene mesnylene
1 165 °C HetAr
a

product, yield

QWi QWi
O NJ\@ O NJ\G R =H: 3ad 63%
N~ N__~ R=Me:3ae 78%
N /N/ R = OMe: 3at 75%
R = CFg: 3ah 76%
o@’” © R = CN: 3ai 61%
R = CO,Me: 3aj 63%
R =H:3aa 73% R = NO,: 3ak 64%
R = Me: 3ab 40%
R =Cl: 3ac 48%
QWi
NS
N N
-
I/
owe R = H: 4aa 35%
aa
3ag 71% 3al 73% R = Me: dab 520%

“Reaction conditions: Cu(OAc), (0.75 mmol), PivOH (0.25 mmol),
1a (0.25 mmol), H-HetAr (0.50 mmol), mesitylene (1.5 mL), 165 °C,
4h N,

R

R =CN: 3cd 64%
R =NO,: 3dd 46%
R = OMe: 3ba 39%
R =CN: 3ca 75%
R =NO,: 3da 65%

LA CLR
X X
Sogh R
N N~ N N~
O 0 /
3ea 71% 3ed 69%

Figure 1. Products of copper-mediated dehydrogenative biaryl
coupling of some 1-naphthylamine derivatives.

proceeded very smoothly to furnish the heteroarylated pyrenes
3ea and 3ed, demonstrating applicability of this protocol to
higher polycondensed aromatic systems.

We also tested structurally related benzylamine derivatives §
(Scheme 2). However, they were not promising substrates

Scheme 2. Preliminary Results with Benzylamine Derivatives

S
3.0 equiv Cu(OAc),
1 .0 equw anOH N
meSIterne HN
165 °C, 4h
R =H: 5a
R =Me: 5b

R =H: 6aa 24% (NMR)
R =Me: 6ba not detected
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under present conditions, while comparable reactivity to the
aminoquinoline system was observed in some precedented
work.””'® The exact reason is not clear, but higher planarity
associated with the naphthalene may play an important role in
the C—H cleavage step.

The following deuterium-labeling experiments provided
some mechanistic insight. At an early stage of the reaction
(10 min), both 1la-d, and 2a-d; underwent the H/D
scrambling, but the larger deuterium content of 2a-d;, was
lost (Scheme 3a). These results are suggestive of the more

Scheme 3. Deuterium-Labeling Experiments

N
H/D — j@
o

a) H/D Scrambling reactions

o _</N :@ Cu(OAc),, PivOH
o

mesitylene, 170 °C

10 min
2a-d, (95% D) Ref 5a 36% D
89% D w/o 2a
91 /° ,79%D 87% D w 2a D 79% D w/o 2a
° 972% D w2a
(2a)
Cu OAc),, PivOH D
mesnylene 165 °C
10 min H/D
1a-d;

%(_/ 68% D w/o 2a
99% D at other 85%D w2a
positions

99% D at other positions

b) Comparison of production rates of 3aa
Reaction conditions: Cu(OAc), (0.75 mmol), PivOH (0.25 mmol),
1a or 1a-d (0.25 mmol), 2a or 2a-d; (0.50 mmol), mesitylene, 165 °C, 30 min

1a + 2a-d,
46%

63%

1a + 2a 3aa

51%™\ 1a-d, + 2a

rapid C—H metalation of benzoxazole (2a) than that of
naphthylamine 1la. Although correct values of the kinetic
isotope effect could not be calculated by the partial but
considerable H/D exchange of both substrates, comparison of
production rates of 3aa indicated no rate-determining C—H
cleavage of la and 2a (Scheme 3b): the introduction of
deuterium into either la or 2a gave only minor impact on the
yield of 3aa. This is in marked contrast with the aminoquino-
line-based system where C—H cleavage appeared to be
irreversible rate-determining step.’

On the basis of the above results and literature information,
although the present mechanistic consideration is premature,
we are tempted to assume the reaction mechanism of 1a with
2a as shown in Scheme 4. An initial C—H cupration of

Scheme 4. Plausible Mechanism (R = Me or t-Bu)

Cu (OZCR)Z = Rco2 Cu—</ —> '\CU%BO

Rc:o2 >_N

Yool |
&CU‘“N # Cu(O:CR); _ C“ ~N R(:o2
3aa
"~ Cu(0,CR) ZCu(0,CR)
“RooH 4 @ 0 @ 2
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relatively acidic 2a is followed by N,N-bidentate coordination
with la to generate the organocopper intermediate 7.'*
Subsequent C—H cleavage of the la followed by oxidation
(disproportionation) with additional Cu(II) forms the Cu(III)
metalacycle 9.'>'® The formation of corresponding heterobiaryl
3aa then follows from productive reductive elimination.'’
Although the origin of selectivity for the cross-coupling over the
homocoupling remains to be elucidated, the electron-with-
drawing nature of 1,3-azole ligand is believed to play a key role.
The relatively high acidity of NH in la can accelerate the
cyclometalation steps (7 and/or 8). The site-selectivity can be
determined by formation of kinetically favored five-membered
metelacycle 8. The exact role of PivOH remains unclear, but it
can accelerate C—H cleavage of la through a concerted-
metalation—deprotonation pathway.'® The rate-limiting step
remains to be elucidated, but it can involve the oxidation of
Cu(II) into Cu(III) or reductive elimination.

Finally, we attempted the removal of the directing group
from the coupling product. To our delight, the protection of
the NH moiety in 3ad with Boc,0 was followed by ethanolysis
with NaOEt in Et,O/EtOH (4:1, v/v) to give 3ad’ in a good
overall yield (Scheme S).

Scheme 5. Removal of the Picolinamide Directing Group

l NHBoc

N
|
O n N__J BocO, DMAP NaOEt N
- CH,Cly, 1, 16 h  Et;O/EtOH (4:1) p
04 m,3h 0
3ad 92% 73% 3ad'

3. CONCLUSION

We have developed a copper-mediated biaryl coupling of 1-
naphthylamines and 1,3-azoles via 2-fold C—H cleavage,
providing naphthalene—azole z-conjugations directly."” The
key to its success is the introduction of the N,N-double
coordination strategy based on a picolinamide system.
Moreover, the directing group is readily removable after the
coupling event. Detailed mechanistic studies and further
development of relevant copper-mediated C—H functionaliza-
tion are ongoing in our laboratory.

4. EXPERIMENTAL SECTION

Instrumentation and Chemicals. 'H and *C NMR spectra were
recorded at 400 and 100 MHz, respectively, for CDCI; solutions.
HRMS data were obtained by EI using a double focusing mass
spectrometer. GC analysis was carried out using a silicon OV-17
column (i.d. 2.6 mm X 1.5 m) or a CBP-1 capillary column (i.d. 0.5
mm X 25 m). Gel permeation chromatography (GPC) was performed
with a CHCI, eluent (3.5 mL/min, UV detector). Unless otherwise
noted, materials obtained from commercial suppliers were used
without further purification. Mesitylene was freshly distilled from
CaH, prior to use. Naphthylamine derivatives 1 were prepared from
the parent amines and picolinoyl chloride (see Experimental Section).
5-Substituted benzoxazoles were obtained through the condensation of
2-aminophenol derivatives with triethyl orthoformate.*® 5-Aryloxazoles
were prepared by the van Leusen reaction with TosMIC and the
corresponding aldehydes.”* Deuterium-labeling 2a-d;, was synthesized
according to the literature.”* Unless otherwise noted, all reactions were
carried out under N, conditions.

Preparation of Naphthylamine Derivatives 1. Synthesis of 1a
is representative. To a mixture of 1-naphthylamine (1.4 g, 10 mmol),

picolinoyl chloride hydrochloride (2.0 g, 11 mmol), and 4-(N,N-
dimethylamino)pyridine (DMAP, 367 mg, 3.0 mmol) in CH,Cl, (30
mL) was added Et;N (3.0 mL, 22 mmol), and the resulting mixture
was stirred at rt for 4 h. The mixture was quenched with water and
extracted with CH,Cl,. The combined organic layer was washed with
brine and dried over sodium sulfate. After concentration in vacuo, the
residual solids were triturated with hexane under sonication and then
collected to give N-(naphthalen-1-yl)picolinamide (la, 2.3 g 9.2
mmol) in 92% yield in an analytically pure form (>95% purity judged
by '"H NMR). The spectrum data were in agreement with the
literature."" The obtained material can be used for the coupling
reaction without further purification.

Preparation of 1a-d;. NaNO; (570 mg, 6.7 mmol) was dissolved
in TFA (28 mL), and naphthalene-dg (99% D, 1.0 g, 7.35 mmol) was
added in several portions at room temperature under air. The mixture
was stirred for S h at the same temperature, cooled to 0 °C with an ice
water bath, and then neutralized with 6 M aq NaOH. The organic
phase was extracted with diethyl ether and evaporated under reduced
pressure. The crude 1-nitronaphthalene-d,; obtained was used for the
next step without further purification.

To a mixture of the above 1-nitronaphthalene-d, and concentrated
aq HCl (ca. 11 M, 7.0 mL) in EtOH (15 mL), Sn powder (3.5 g, 29
mmol) was added in several portions, and the resulting mixture was
stirred at room temperature under air. After 6 h, volatile materials were
evaporated in vacuo, and residue was dissolved in water and diethyl
ether. The mixture was neutralized with saturated aq K,CO; and then
filtered through a pad of Celite. The filtrate was extracted with ethyl
acetate, concentrated under reduced pressure, and purified by column
chromatography on silica gel with hexane/ethyl acetate (3/1, v/v) to
afford 1-naphthylamine-d, (720 mg, 4.7 mmol) in a 65% two-step
yield. The deuterium content at each position in the naphthalene ring
was determined by 'H and ?’H NMR analysis, as follows: 79% D at C2;
91% D at C4; 99% D at other positions.

The attachment of the picolinoyl moiety to 1-naphthylamine-d, was
performed under the same conditions as those for 1a, and purification
by recrystallization from toluene furnished N-(naphthalen-1-yl)-
picolinamide-d; (1a-d;, 930 mg, 3.7 mmol) in 77% yield.

Typical Procedure for Copper-Mediated Dehydrogenative
Biaryl Coupling. Synthesis of 3aa is representative (Table 1, entry
17). Cu(OAc), (136 mg, 0.7S mmol), N-(naphthalen-1-yl)-
picolinamide (1a, 62 mg, 0.25 mmol), and benzoxazole (2a, 60 mg,
0.50 mmol) were placed in a 20 mL two-necked reaction flask, which
was filled with nitrogen by using the standard Schlenk technique. A
solution of PivOH (26 mg, 0.25 mmol) in mesitylene (2.5 mL) was
then added to the flask, and the suspension was stirred for 4 h at 165
°C. The resulting mixture was allowed to cool to rt and was then
quenched with water. A small amount of ethylenediamine was then
added to dissolve the residual copper salts into the aqueous phase.
Extraction with ethyl acetate, concentration under reduced pressure,
and silica gel column purification with hexane/ethyl acetate (2/1, v/v)
afforded N-(8-(benzo[d]oxazol-2-yl)naphthalen-1-yl)picolinamide
(3aa, 66 mg, 0.18 mmol) in 73% yield.

N-{8-(Benzo[d]oxazol-2-yl)naphthalen-1-ylipicolinamide (3aa).
Purified by column chromatography on silica gel with hexane/ethyl
acetate (2:1, v/v) as an eluent; 66 mg (73%), mp 177—178 °C (from
hexane/ethyl acetate); "H NMR (400 MHz, CDCl;) 6 7.09 (ddd, J =
1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.20 (td, ] = 1.2 Hz, 8.0 Hz, 1H), 7.27 (td,
J =12 Hz, 7.6 Hz, 1H), 7.36 (d, ] = 8.0 Hz, 1H), 7.57—7.69 (m, 4H),
7.74 (d, ] = 7.6 Hz, 1H), 7.90 (d, ] = 8.0 Hz, 1H), 7.97 (dd, ] = 1.2 Hz,
7.2 Hz, 1H), 8.03 (dt, ] = 1.2 Hz, 7.6 Hz, 1H), 8.07 (d, ] = 7.2 Hz,
1H), 8.10 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 10.41 (s, 1H); *C NMR (400
MHz, CDCL,) & 110.5, 120.0, 122.0, 122.9, 1242, 124.7, 125.8, 1262,
1264, 1266, 127.3, 131.9, 1322, 132.7, 135.3, 136.8, 142.1, 147.1,
147.4, 149.1, 151.2, 162.9, 164.6; HRMS (EI) m/z (M) caled for
C,3H;sN30,: 365.1164, found: 365.1163.

N-{8-(5-Methylbenzo[d]oxazol-2-yl)naphthalen-1-yl}-
picolinamide (3ab). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 38 mg (40%), mp
181—182 °C (from hexane/ethyl acetate); 'H NMR (400 MHyz,
CDCl,) 6 3.10 (s, 3H), 6.98 (ddd, ] = 0.4 Hz, 1.6 Hz, 8.4 Hz, 1H),
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7.10 (ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.21 (d, ] = 8.4 Hz, 1H),
7.48 (t, ] = 0.8 Hz, 1H), 7.57 (dd, ] = 7.2 Hz, 8.4 Hz, 1H), 7.62—7.68
(m, 3H), 7.88 (dd, J = 1.2 Hz, 8.0 Hz, 1H), 7.94 (dd, ] = 1.6 Hz, 6.8
Hz, 1H), 8.00—8.05 (m, 2H), 8.08 (dd, ] = 1.2 Hz, 8.4 Hz, 1H), 10.38
(s, 1H); *C NMR (400 MHz, CDCl;) § 21.4, 109.8, 119.9, 122.0,
123.1, 124.7, 125.5, 126.0, 126.2, 126.48, 126.54, 127.3, 131.9, 132.0,
132.5, 133.8, 1352, 136.7, 142.3, 147.4, 149.2, 149.4, 162.9, 164.6;
HRMS (EI) m/z (M') caled for CyH;;N;0,: 379.1321, found:
379.1320.
N-{8-(5-Chlorobenzo[d]oxazol-2-yl)naphthalen-1-yl}-
picolinamide (3ac). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 48 mg (48%), mp
188—190 °C (from hexane/ethyl acetate); 'H NMR (400 MHyz,
CDCl,) 6 7.11 (dd, ] = 2.0 Hz, 8.4 Hz, 1H), 7.19-7.24 (m, 2H), 7.59
(dd, J = 7.2 Hz, 8.0 Hz, 1H), 7.64—7.70 (m, 3H), 7.81 (ddd, ] = 0.8
Hz, 1.6 Hz, 4.8 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.92 (dd, ] = 1.6 Hz,
6.8 Hz, 1H), 7.99 (d, ] = 7.6 Hz, 1H), 8.03 (dt, ] = 1.2 Hz, 8.0 Hz,
1H), 8.12 (dd, J = 0.8 Hz, 8.0 Hz, 1H), 10.13 (s, 1H); *C NMR (400
MHz, CDCl;) 6 111.2, 119.9, 122.2, 122.5, 124.7, 125.1, 125.9, 126.75,
126.81 (two signals were overlapped), 127.5, 129.6, 131.8, 132.0,
132.9, 1352, 137.0, 1432, 147.5, 149.1, 149.7, 162.9, 166.1; HRMS
(EI) m/z (M) caled for C,3H,,CIN;0,: 399.0775, found: 399.0773.
N-{8-(5-Phenyloxazol-2-yl)naphthalen-1-ylipicolinamide (3ad).
Purified by column chromatography on silica gel with hexane/ethyl
acetate (2:1, v/v) as an eluent; 62 mg (63%), mp 141—143 °C (from
hexane/ethyl acetate); '"H NMR (400 MHz, CDCl;) § 7.20—7.30 (m,
4H), 7.23 (s, 1H), 7.41 (dd, ] = 1.6 Hz, 8.4 Hz, 2H), 7.49-7.56 (m,
2H), 7.63 (t, ] = 8.0 Hz, 1H), 7.83—7.88 (m, 3H), 7.98 (d, ] = 7.2 Hg,
1H), 8.03 (d, J = 8.4 Hz, 1H), 8.18 (dd, ] = 0.8 Hz, 4.4 Hz, 1H), 10.19
(s, 1H); *C NMR (400 MHz, CDCl;) § 1222, 122.7, 123.1, 123.8,
124.7, 125.9, 126.35, 126.40, 126.9, 127.3, 127.4, 128.1, 128.5, 131.6,
131.9, 132.0, 135.2, 136.6, 147.4, 149.4, 151.7, 162.2, 162.8; HRMS
(EI) m/z (M) caled for C,gH,,N;0,: 391.1321, found: 391.1324.
N-[8-{5-(4-Methylphenyl)oxazol-2-yl}naphthalen-1-yl]-
picolinamide (3ae). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 79 mg (78%), mp
65—66 °C (from hexane/ethyl acetate); '"H NMR (400 MHz, CDCls)
§2.34 (s, 3H), 7.11 (d, ] = 8.0 Hz, 2H), 7.18 (s, 1H), 7.22 (ddd, J =
1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.32 (d, ] = 8.4 Hz, 2H), 7.54 (td, ] = 1.6
Hz, 7.6 Hz, 2H), 7.63 (t, ] = 7.6 Hz, 1H), 7.84—7.91 (m, 3H), 7.99 (d,
] =72 Hz, 1H), 8.03 (dd, ] = 1.2 Hz, 8.0 Hz, 1H), 8.20 (ddd, ] = 0.8
Hz, 1.6 Hz, 4.8 Hz, 1H), 10.25 (s, 1H); *C NMR (400 MHz, CDCl,)
521.3, 122.1, 122.3, 123.2, 123.9, 124.77, 124.81, 126.0, 126.3, 126.4,
126.8, 127.3, 129.2, 131.6, 131.9, 132.1, 135.3, 136.7, 138.2, 147.4,
149.5, 152.1, 161.9, 162.8; HRMS (EI) m/z (M%) caled for
C,6H yN;0,: 405.1477, found: 405.1474.
N-[8-{5-(4-Methoxyphenyl)oxazol-2-yl}naphthalen-1-yl]-
picolinamide (3af). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 79 mg (75%), mp
136—137 °C (from hexane/ethyl acetate); 'H NMR (400 MHz,
CDCl,) 6 3.80 (s, 3H), 6.83 (dd, ] = 2.0 Hz, 6.8 Hz, 2H), 7.10 (s, 1H),
7.23 (ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.34 (dd, ] = 2.0 Hz, 6.8
Hz, 2H), 7.50—7.52 (m, 2H), 7.63 (t, ] = 8.0 Hz, 1H), 7.83—7.90 (m,
3H), 7.98 (d, ] = 7.2 Hz, 1H), 8.02 (dd, ] = 1.2 Hz, 8.0 Hz, 1H), 8.21
(ddd, J = 1.2 Hz, 1.6 Hz, 4.8 Hz, 1H), 10.22 (s, 1H); *C NMR (400
MHz, CDCl,) § 55.2, 114.0, 120.4, 122.21, 122.19, 123.2, 124.7, 125.4,
125.9, 126.26, 126.32, 126.8, 127.3, 131.6, 131.8, 132.0, 135.2, 136.7,
147.4, 149.4, 151.8, 159.6, 161.6, 162.8; HRMS (EI) m/z (M*) calcd
for C,HoN;05: 421.1426, found: 421.1423.
N-[8-{5-(3,4-Dimethoxyphenyl)oxazol-2-yl}naphthalen-1-yl]-
picolinamide (3ag). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 80 mg (71%), mp
200—202 °C (from hexane/ethyl acetate); 'H NMR (400 MHz,
CDCl,) 6 3.88 (s, 3H), 3.89 (s, 3H), 6.76 (d, ] = 8.4 Hz, 1H), 6.91 (d,
] =2.0 Hz, 1H), 6.94 (dd, ] = 2.0 Hz, 8.4 Hz, 1H), 7.11 (s, 1H), 7.22
(ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.52—7.57 (m, 2H), 7.63 (t, ] =
7.6 Hz, 1H), 7.83—7.89 (m, 3H), 7.97 (d, ] = 7.2 Hz, 1H), 8.04 (d, ] =
8.0 Hz, 1H), 8.24 (dd, J = 0.8 Hz, 40 Hz, 1H), 10.11 (s, 1H); *C
NMR (400 MHz, CDCL;) § §5.9, §5.9, 107.2, 111.1, 116.7, 120.6,
121.5, 122.1, 1232, 124.8, 125.9, 126.3, 126.9, 127.3, 131.6, 131.8,

132.0, 135.2, 136.6, 147.4, 148.9, 149.1, 149.4, 151.8, 161.6, 162.7
(One signal was overlapped by other ones); HRMS (EI) m/z (M")
caled for CpH, N3O, 451.1532, found: 451.1531.
N-[8-{5-(4-(Trifluoromethyl)phenyl)oxazol-2-ylinaphthalen-1-yl]-
picolinamide (3ah). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 87 mg (76%), mp
128—129 °C (from hexane/ethyl acetate); 'H NMR (400 MHyz,
CDCl,) 6 7.23 (ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.32 (s, 1H),
7.47—7.59 (m, 6H), 7.66 (t, ] = 8.0 Hz, 1H), 7.84 (ddd, J = 1.2 Hz, 2.8
Hz, 7.2 Hz, 2H), 791 (d, ] = 8.4 Hz, 1H), 7.94 (d, ] = 7.2 Hz, 1H),
8.08 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 8.22 (ddd, ] = 0.8 Hz, 1.6 Hz, 4.8
Hz, 1H), 9.99 (s, 1H); *C NMR (400 MHz, CDCl;) § 122.3, 122.8,
123.88 (q, J = 270 Hz), 123.93, 124.5, 124.8, 125.6 (q, ] = 3.8 Hz),
126.1, 126.6, 126.9, 127.2, 127.6, 129.9 (q, ] = 32 Hz), 130.7 (g, ] = 1.0
Hz), 131.8, 131.8, 132.2, 135.3, 136.7, 147.4, 149.3, 150.4, 162.7,
163.3; ’F NMR (376 MHz, CDCl,) § —62.65 (s); HRMS (EI) m/z
(M*) caled for CygH,¢F3N;0,: 459.1195, found: 459.1196.
N-[8-{5-(4-Cyanophenyl)oxazol-2-ylinaphthalen-1-yl]-
picolinamide (3ai). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 63 mg (61%), mp
201-202 °C (from hexane/ethyl acetate); 'H NMR (400 MHyz,
CDCly) 6 7.15—7.18 (m, 1H), 7.26 (s, 1H), 7.38 (d, ] = 8.4 Hz, 2H),
7.51-7.44 (m, 4H), 7.58 (t, ] = 8.0 Hz, 1H), 7.75-7.77 (m, 2H),
7.81-7.86 (m, 2H), 7.99 (d, ] = 8.4 Hz, 1H), 8.14 (d, ] = 4.0 Hz, 1H),
9.86 (s, 1H); 3C NMR (400 MHz, CDCl,) § 1112, 118.5, 122.2,
122.6, 124.1, 124.8, 125.5, 126.1, 126.6, 126.9, 127.2, 127.6, 131.3,
131.7, 131.8, 132.3, 132.4, 135.19, 136.8, 147.4, 149.2, 149.9, 162.6,
163.7; HRMS (EI) m/z (M*) caled for C,gH 4N, O,: 416.1273, found:
416.1274
Methyl 4-[2-{8-(Picolinamido)naphthalen-1-yl}oxazol-5-yl]-
benzoate (3aj). Purified by column chromatography on silica gel
with hexane/ethyl acetate (1:1, v/v) as an eluent; 71 mg (63%), mp
59—61 °C (from hexane/ethyl acetate); '"H NMR (400 MHz, CDCl,)
5 3.92 (s, 3H), 7.21 (ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.33 (s,
1H), 7.45 (dt, ] = 1.6 Hz, 8.4 Hz, 2H), 7.50 (dt, ] = 1.6 Hz, 7.6 Hz,
1H), 7.55 (dd, J = 7.2 Hz, 8.0 Hz, 1H), 7.64 (t, ] = 8.0 Hz, 1H), 7.82—
7.89 (m, 3H), 7.93=7.97 (m, 3H), 8.04—8.06 (m, 1H), 8.18 (ddd, J =
0.8 Hz, 1.6 Hz, 4.8 Hz, 1H), 10.03 (s, 1H); *C NMR (400 MHz,
CDCly) 6 52.1, 122.2, 122.7, 123.5, 124.6, 124.7, 126.0, 126.4, 126.7,
127.1, 127.5, 129.3, 129.8, 131.4, 131.7, 131.8, 132.1, 135.1, 136.7,
147.4, 149.2, 150.7, 162.7, 163.2, 166.4; HRMS (EI) m/z (M*) calcd
for C,,H,oN,0,: 449.1376, found: 449.1375.
N-[8-{5-(4-Nitrophenyl)oxazol-2-yl}naphthalen-1-yl]picolinamide
(3ak). Purified by column chromatography on silica gel with hexane/
ethyl acetate (2:1, v/v) as an eluent; 70 mg (64%), mp 216—218 °C
(from hexane/ethyl acetate); '"H NMR (400 MHz, CDCl,) § 7.26
(ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.40 (s, 1H), 7.51—7.60 (m,
4H), 7.67 (t, ] = 8.0 Hz, 1H), 7.84—7.87 (m, 2H), 7.93 (t, ] = 8.4 Hz,
2H), 8.09 (dd, J = 1.2 Hz, 8.0 Hz, 1H), 8.15 (dt, J = 2.0 Hz, 9.2 Hz,
2H), 8.24 (ddd, J = 0.8 Hz, 1.6 Hz, 4.8 Hz, 1H), 9.95 (s, 1H); 1°C
NMR (400 MHz, CDCL,) & 122.2, 122.5, 124.1, 124.2, 124.9, 126.1,
1262, 126.6, 127.0, 127.2, 127.6, 131.7, 131.8, 132.4, 1332, 135.2,
136.9, 146.9, 147.4, 149.3, 149.7, 162.6, 164.1; HRMS (EI) m/z (M")
caled for C,sH (N,O,: 436.1172, found: 436.1174.
N-[8-{5-(Naphthalen-1-yl)oxazol-2-yl}naphthalen-1-yl]-
picolinamide (3al). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 86 mg (78%), mp
153—154 °C (from hexane/ethyl acetate); 'H NMR (400 MHyz,
CDCL,) 6 7.14 (ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.43—7.52 (m,
SH), 7.45 (s, 1H), 7.57—7.62 (m, 2H), 7.66 (t, ] = 8.0 Hz, 1H), 7.81—
7.95 (m, 4H), 8.03 (t, J = 7.2 Hz, 2H), 8.07 (dd, ] = 1.2 Hz, 8.4 Hz,
1H), 8.25 (ddd, J = 1.2 Hz, 1.6 Hz, 4.8 Hz, 1H), 1047 (s, 1H); *C
NMR (400 MHz, CDCL) § 122.4, 123.2, 124.6, 124.8, 125.2, 126.0
(two signals were overlapped), 126.1, 126.3, 126.5, 126.7, 126.9, 127.3,
128.7, 129.3, 129.6, 131.7, 132.1, 132.2, 133.7, 135.4, 136.8, 147.6,
149.7, 150.7, 162.5, 1629 (two signals were overlapped by other
ones); HRMS (EI) m/z (M") caled for C,oH;oN;0,: 441.1477, found:
441.1476.
N-{8-(Benzo[d]oxazol-2-yl)-4-methoxynaphthalen-1-yl}-
picolinamide (3ba). Purified by column chromatography on silica gel
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with hexane/ethyl acetate (2:1, v/v) as an eluent; 39 mg (39%), mp
158—160 °C (from hexane/ethyl acetate); 'H NMR (400 MHyz,
CDCl,) 6 4.08 (s, 3H), 7.01 (d, ] = 8.4 Hz, 1H), 7.07 (ddd, ] = 1.2 Hz,
4.8 Hz, 7.6 Hz, 1H), 7.17 (td, J = 1.2 Hz, 7.6 Hz, 1H), 7.22 (td, ] = 1.2
Hz, 7.6 Hz, 1H), 7.33 (ddd, ] = 0.8 Hz, 1.2 Hz, 8.2 Hz, 1H), 7.55—7.69
(m, 4H), 7.81 (dd, ] = 0.4 Hz, 8.4 Hz, 1H), 7.92 (dd, J = 1.6 Hz, 7.2
Hz, 1H), 7.99 (dt, ] = 0.8 Hz, 8.0 Hz, 1H), 8.59 (dd, ] = 1.2 Hz, 84
Hz, 1H), 10.05 (s, 1H); 3C NMR (400 MHz, CDCl;) § 55.9, 104.6,
1104, 119.9, 121.9, 122.7, 124.1, 124.2, 124.8, 125.7, 126.36, 127.0,
127.5, 128.1, 132.5, 136.7, 142.1, 147.4, 149.2, 151.2, 154.4, 163.2,
164.8 (one signal was overlapped by othe ones); HRMS (EI) m/z
(M*) caled for Cy,H;N;05: 395.1270, found: 395.1272.
N-{8-(Benzo[d]oxazol-2-yl)-4-cyanonaphthalen-1-yl}-
picolinamide (3ca). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 73 mg (75%), mp
195—197 °C (from hexane/ethyl acetate); 'H NMR (400 MHyz,
CDCly) 6§ 7.12 (ddd, J = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.25—7.3S (m,
2H), 7.40 (dd, ] = 0.4 Hz, 8.0 Hz, 1H), 7.49 (ddd, ] = 0.8 Hz, 1.6 Hz,
4.8 Hz, 1H), 7.67 (td, ] = 1.6 Hz, 8.0 Hz, 1H), 7.78—7.82 (m, 2H),
8.05 (dt, J = 0.8 Hz, 8.0 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.14 (dd, J
= 1.2 Hz, 7.2 Hz, 1H), 8.31 (d, ] = 8.0 Hz, 1H), 8.53 (dd, ] = 1.2 Hz,
8.4 Hz, 1H), 10.80 (s, 1H); *C NMR (400 MHz, CDCl;) § 107.8,
110.6, 117.7, 120.3, 122.2, 123.0, 123.8, 124.5, 125.0, 125.5, 126.3,
127.3, 129.7, 133.5, 133.6, 134.5, 137.1, 137.3, 142.0, 147.4, 148.4,
151.3, 162.6, 163.2; HRMS (EI) m/z (M") caled for C,,H,,N,O,:
390.1117, found: 390.1119.
N-{8-(Benzo[d]oxazol-2-yl)-4-nitronaphthalen-1-ylipicolinamide
(3da). Purified by GPC; 67 mg (65%), mp 191-192 °C (from
hexane/ethyl acetate); '"H NMR (400 MHz, CDCl;) § 7.13 (ddd, ] =
1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.24 (td, ] = 1.2 Hz, 7.6 Hz, 1H), 7.29 (td,
J =12 Hz, 7.6 Hz, 1H), 7.36—7.39 (m, 1H), 7.55 (ddd, ] = 1.2 Hz, 1.6
Hz, 4.8 Hz, 1H), 7.67 (td, ] = 1.6 Hz, 7.6 Hz, 1H), 7.75 (ddd, ] = 0.8
Hz, 1.6 Hz, 8.0 Hz, 1H), 7.83 (dd, ] = 7.2 Hz, 8.8 Hz, 1H), 8.04 (dt, J
= 1.2 Hz, 8.0 Hz, 1H), 8.13 (dd, J = 1.2 Hz, 7.2 Hz, 1H), 8.39 (bs,
2H), 8.83 (dd, J = 1.2 Hz, 8.8 Hz, 1H), 10.61 (s, IH); *C NMR (400
MHz, CDCl,) § 110.6, 120.3, 122.2, 122.3, 123.7, 124.6, 125.1, 125.5,
125.8, 126.3, 127.2, 127.4, 127.9, 133.4, 137.1, 137.9, 142.2, 144.4,
147.5, 148.3, 151.4, 162.6, 163.4; HRMS (EI) m/z (M*) caled for
C,3H,N,O,: 410.1015, found: 410.1016.
N-{10-(Benzo[d]oxazol-2-yl)pyren-1-ylipicolinamide (3ea). Puri-
fied by column chromatography on silica gel with hexane/ethyl acetate
(1:1, v/v) as an eluent; 78 mg (71%), mp 170—172 °C (from hexane/
ethyl acetate); "H NMR (400 MHz, CDCL,) § 7.10 (ddd, J = 1.2 Hg,
4.8 Hz, 7.6 Hz, 1H), 7.19 (td, ] = 1.2 Hz, 8.0 Hz, 1H), 7.26 (td, ] = 1.2
Hz, 7.6 Hz, 1H), 7.36 (d, ] = 7.6 Hz, 1H), 7.64 (td, ] = 1.6 Hz, 7.6 Hz,
1H), 7.71 (td, ] = 0.8 Hz, 1.6 Hz, 4.8 Hz, 1H), 7.76 (dd, ] = 0.4 Hz, 7.2
Hz, 1H), 7.99-8.11 (m, 4H), 8.20 (d, ] = 7.2 Hz, 1H), 825 (d, ] = 7.2
Hz, 1H), 8.32 (d, ] = 8.4 Hz, 1H), 8.51 (d, ] = 8.4 Hz, 1H), 8.59 (s,
1H), 10.59 (s, 1H); *C NMR (400 MHz, CDCL,) § 110.5, 120.0,
122.0, 122.1, 122.4, 124.2, 125.0, 125.3, 125.8, 126.2, 126.3, 126.5,
126.6, 126.7, 127.4, 127.8, 129.2, 129.7, 130.7, 131.2, 134.9, 126.8,
142.1, 147.5, 149.1, 151.2, 163.0, 164.8 (one signal was overlapped by
othe ones); HRMS (EI) m/z (M) caled for C,0H;,N;0,: 439.1321,
found: 439.1324.
N-{4-Cyano-8-(5-phenyloxazol-2-yl)naphthalen-1-yl}-
picolinamide (3 cd). Purified by column chromatography on silica gel
with hexane/ethyl acetate (2:1, v/v) as an eluent; 67 mg (64%), mp
185—187 °C (from hexane/ethyl acetate); 'H NMR (400 MHz,
CDCly) 6 7.27—7.35 (m, 4H), 7.34 (s, 1H), 7.44—7.46 (m. 2H), 7.62
(td, ] = 1.6 Hz, 7.6 Hz, 1H), 7.79 (dd, ] = 7.2 Hz, 8.4 Hz, 1H), 7.94 (d,
] =8.0 Hz, 1H), 8.04 (dd, J = 1.2 Hz, 7.2 Hz, 1H), 8.08 (d, ] = 8.0 Hz,
1H), 8.23 (dd, J = 0.8 Hz, 4.0 Hz, 1H), 8.30 (d, ] = 8.0 Hz, 1H), 8.49
(dd, J = 1.2 Hz, 8.4 Hz, 1H), 10.63 (s, 1H); *C NMR (400 MHz,
CDClLy) 6 107.9, 117.7, 122.5, 123.1, 123.4, 123.96, 124.02, 125.4,
126.5, 127.2, 127.4, 128.6, 128.7, 129.0, 133.0, 133.4, 134.5, 137.0,
137.4, 147.6, 148.8, 152.5, 160.9, 162.6; HRMS (EI) m/z (M*) calcd
for C,H N,O,: 416.1273, found: 416.1275.
N-{4-Nitro-8-(5-phenyloxazol-2-yl)naphthalen-1-ylipicolinamide
(3dd). Purified by recrystallization from toluene; SO mg (46%), mp
216—217 °C (from toluene); 'H NMR (400 MHz, CDCl;) 6 7.27 (s,

1H), 7.28—7.35 (m, 4H), 7.41 (dd, ] = 1.6 Hz, 8.0 Hz, 2H), 7.61 (td, ]
= 1.6 Hz, 7.6 Hz, 1H), 7.82 (dd, ] = 7.2 Hz, 8.8 Hz, 1H), 7.91 (dt, ] =
0.8 Hz, 7.6 Hz, 1H), 8.04 (dd, ] = 1.2 Hz, 7.2 Hz, 1H), 8.24 (ddd, J =
0.8 Hz, 1.6 Hz, 4.8 Hz, 1H), 8.30 (d, ] = 8.4 Hz, 1H), 8.37 (d, ] = 8.4
Hz, 1H), 8.78 (dd, ] = 1.2 Hz, 8.8 Hz, 1H), 10.43 (s, 1H); *C NMR
(400 MHz, CDCl,) § 122.5, 123.1, 123.9, 124.0, 124.9, 126.2, 126.5,
126.6, 127.2, 127.4, 128.0, 128.6, 128.75, 132.9, 137.1, 138.0, 142.1,
144.5, 147.6, 148.7, 152.6, 161.0, 162.5; HRMS (EI) m/z (M*) calcd
for C,oH,6N,O,: 436.1172, found: 436.1177.

N-{10-(5-Phenyloxazol-2-yl)pyren-1-yl}picolinamide (3ed). Puri-
fied by column chromatography on silica gel with hexane/ethyl acetate
(2:1, v/v) as an eluent; 80 mg (69%), mp 208—210 °C (from hexane/
ethyl acetate); '"H NMR (400 MHz, CDCly) § 7.21-7.31 (m, 4H),
7.27 (s, 1H), 7.41-7.43 (m, 2H), 7.52 (dd, ] = 1.6 Hz, 7.6 Hz, 1H),
7.88 (dt, ] = 0.8 Hz, 8.0 Hz, 1H), 7.97—8.08 (m, 3H), 8.17 (d, ] = 7.6
Hz, 1H), 8.21 (dd, J = 0.8 Hz, 7.6 Hz, 1H), 8.24 (ddd, ] = 0.8 Hz, 1.6
Hz, 4.8 Hz, 1H), 829 (d, ] = 8.4 Hz, 1H), 8.42—8.45 (m, 2H), 10.35
(s, 1H); *C NMR (400 MHz, CDCl,) § 122.2, 122.5, 122.7, 122.9,
123.9, 125.0, 125.9, 126.0, 126.07, 126.14, 126.4, 126.7, 126.9, 1274,
127.6, 128.2, 128.5 (two signals were overlapped), 129.2, 129.7, 130.6,
131.0, 134.0, 136.6, 147.4, 149.4, 151.8, 162.5, 162.9; HRMS (EI) m/z
(M) caled for C31H;oN;O,: 465.1477, found: 465.1483.

N-{8-(Thiazol-2-yl)naphthalen-1-yl}picolinamide (4aa). Purified
by column chromatography on silica gel with hexane/ethyl acetate
(2:1, v/v) as an eluent; 29 mg (35%), mp 100—101 °C (from hexane/
ethyl acetate); '"H NMR (400 MHz, CDCly) § 7.12 (d, ] = 3.2 Hg,
1H), 7.38 (ddd, ] = 1.2 Hz, 4.8 Hz, 7.2 Hz, 1H), 7.49 (t, ] = 7.6 Hz,
1H), 7.57 (dd, J = 1.2 Hz, 6.8 Hz, 1H), 7.62 (t, ] = 7.6 Hz, 1H), 7.78
(td, J = 1.6 Hz, 7.6 H, 1H), 7.84—7.86 (m, 2H), 8.00 (dd, ] = 1.2 Hz,
8.0 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.45
(dd, J = 0.8 Hz, 4.0 Hz, 1H), 10.07 (s, 1H); *C NMR (400 MHz,
CDCly) § 119.5, 122.2, 124.5, 125.6, 126.0, 126.30, 126.32, 127.1,
129.1, 131.4, 132.1, 132.4, 135.5, 137.1, 1432, 1474, 149.8, 162.7,
169.7; HRMS (EI) m/z (M*) caled for C,H,3N;0S: 331.0779, found:
331.0782.

N-{8-(4,5-Dimethylthiazol-2-yl)naphthalen-1-ylipicolinamide
(4ab). Purified by column chromatography on silica gel with hexane/
ethyl acetate (2:1, v/v) as an eluent; 47 mg (52%), mp 128—130 °C
(from hexane/ethyl acetate); '"H NMR (400 MHz, CDCl;) § 2.09 (s,
3H),2.33 (s, 3H), 7.39 (ddd, ] = 1.2 Hz, 4.8 Hz, 7.6 Hz, 1H), 7.46 (t, ]
= 7.6 Hz, 1H), 7.53 (dd, ] = 1.2 Hz, 6.8 Hz, 1H), 7.59 (t, ] = 8.0 Hz,
1H), 7.79 (dd, J = 1.6 Hz, 7.6 Hz, 1H), 7.82—7.83 (m, 1H), 7.93—7.97
(m, 2H), 8.16 (d, ] = 7.6 Hz, 1H), 8.44 (d, ] = 4.4 Hz, 1H), 9.98 (s,
1H); *C NMR (400 MHz, CDCl;) § 10.9, 14.7, 122.3, 124.4, 125.9,
126.1, 126.2, 126.7, 127.2, 127.3, 129.6, 130.9, 131.5, 132.3, 135.5,
137.1, 147.2, 148.8, 150.2, 162.7, 165.0; HRMS (EI) m/z (M*) calcd
for C,;H,;N;0S: 359.1092, found: 359.1088.

Typical Procedure for Removal of the Directing Group
(Scheme 5). A mixture of N-{8-(S-phenyloxazol-2-yl)naphthalen-1-
yl}picolinamide (3ad, 66 mg, 0.17 mmol), Boc,0 (197 mg, 0.90
mmol), and 4-(N,N-dimethylamino)pyridine (DMAP, 44 mg, 0.36
mmol) was stirred in CH,Cl, (2.0 mL) at room temperature for 16 h.
After the completion of the reaction was confirmed by TLC analysis,
the volatile materials were then evacuated under reduced pressure. The
residue was purified by chromatography on silica gel with hexane/ethyl
acetate (2:1, v/v) to provide tert-butyl {8-(S-phenyloxazol-2-yl)-
naphthalen-1-yl} (picolinoyl)carbamate (77 mg, 0.16 mmol) in 92%
yield.

The above product (54 mg, 0.11 mmol) was dissolved in Et,O/
EtOH (4.8 mL/1.2 mL), and EtONa (23 mg, 0.33 mmol) was then
added in one portion. After being stirred at room temperature for 3 h,
the mixture was quenched with water. Extraction with ethyl acetate,
evaporation in vacuo, and purification by silica gel column
chromatography (hexane/ethyl acetate, 3:1, v/v) afforded tert-butyl
{8-(5-phenyloxazol-2-yl)naphthalen-1-yl}carbamate (3ad’, 31 mg,
0.081 mmol) in 73% yield.

tert-Butyl {8-(5-Phenyloxazol-2-yl)naphthalen-1-yl}carbamate
(3ad’). Purified by column chromatography on silica gel with
hexane/ethyl acetate (3:1, v/v) as an eluent; 31 mg (73%), mp
143—144 °C (from hexane/ethyl acetate); 'H NMR (400 MHz,
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CDCl,) 6 1.28 (s, 9H), 7.32—7.37 (m,1H), 7.41—7.46 (m, 2H), 7.49—
7.57 (m, 2H), 7.55 (s, 1H), 7.70—7.75 (m, 3H), 7.85—7.89 (m, 2H),
8.00 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 8.24 (s, 1H); *C NMR (400 MHz,
CDCly) 6 28.1, 79.6, 1222, 122.9, 124.3, 124.4, 125.5, 126.1, 1264,
127.7,128.7,129.0, 131.4, 132.4, 133.3, 135.3, 152.1, 153.9, 162.7 (one
signal was overlapped by other ones); HRMS (EI) m/z (M*) calcd for
C,4H,,N,0;: 386.1630, found: 386.1632.
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